The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics.
نویسندگان
چکیده
We analysed the cold-responsive gene repertoire for a psychrophilic methanogen, Methanolobus psychrophilus R15 through genomic and RNA-seq assayed transcriptomic comparisons for cultures at 18°C (optimal temperature) versus 4°C. The differences found by RNA-seq analysis were verified using quantitative real time-PCR assay. The results showed that as in the Antarctic methanogen, Methanococcoides burtonii, genes for methanogenesis, biosynthesis and protein synthesis were all downregulated by the cold in R15. However, the RNA polymerase complex was upregulated at cold, as well as a gene cluster for a putative exosome complex, suggesting that exosome-mediated RNA decay may be cold-accelerated. Unexpectedly, the chaperonin genes for both thermosome and GroES/EL were all upregulated at 4°C. Strain R15 possessed eight protein families for oxygen detoxification, including both anaerobe-specific superoxide reductase (SOR) and the aerobe-typical superoxide dismutase (SOD)-catalase oxidant-removing system, implying the higher oxidative tolerance. Compared with a mesophilic methanogen, R15 survived in higher paraquat, a redox-cycling drug. Moreover, 71 one-component systems and 50 two-component systems for signal transduction ranked strain R15, together with M. burtonii, as being highly adaptive among archaea. Most of them exhibited cold-enhanced expression, indicating their involvement in cold adaptation. This study has added new perspectives on the cold adaptation of methanogenic archaea.
منابع مشابه
Global mapping transcriptional start sites revealed both transcriptional and post-transcriptional regulation of cold adaptation in the methanogenic archaeon Methanolobus psychrophilus
Psychrophilic methanogenic Archaea contribute significantly to global methane emissions, but archaeal cold adaptation mechanisms remain poorly understood. Hinted by that mRNA architecture determined secondary structure respond to cold more promptly than proteins, differential RNA-seq was used in this work to examine the genome-wide transcription start sites (TSSs) of the psychrophilic methanoge...
متن کاملMethanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, "Methanolobus psychrophilus" sp. nov., prevalent in Zoige wetland of the Tibetan plateau.
The Zoige wetland of the Tibetan plateau is at permanent low temperatures and is a methane emission heartland of the plateau; however, cold-adaptive methanogens in the soil are poorly understood. In this study, a variety of methanogenic enrichments at 15 degrees C and 30 degrees C were obtained from the wetland soil. It was demonstrated that hydrogenotrophic methanogenesis was the most efficien...
متن کاملConserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity
Cold shock proteins (Csps) enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal p...
متن کاملTaxonomy of psychrophilic strains of Bacillus.
The morphological and physiological characteristics of 20 isolates of psychrophilic Bacillus were compared with 29 strains representing nine species of mesophilic Bacillus and 2 strains of Sporosarcina ureae to determine the taxonomic position of the psychrophiles. The psychrophiles formed four distinct groups which were sufficiently different from the mesophiles to warrant their designation as...
متن کاملAdaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis
The hyperthermophilic archaeon Thermococcus onnurineus NA1 can grow and produce H2 on carbon monoxide (CO) and its H2 production rates have been improved through metabolic engineering. In this study, we applied adaptive evolution to enhance H2 productivity. After over 150 serial transfers onto CO medium, cell density, CO consumption rate and H2 production rate increased. The underlying mechanis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology reports
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2012